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ABSTRACT Understanding the effects of extreme
events or disasters on production is crucial for quanti-
fying damage and for identifying options for damage
reduction. The latter has got increasing attention ow-
ing to the need for adaptation to climate change, since
global warming may increase the frequency and inten-
sity of extreme weather events.
The paper provides a micro-foundation of direct and in-
direct damage costs of extreme events that disturb pro-
ductive capital. By considering the optimum reconstruc-
tion path after an extreme event, we show that both, the
direct reconstruction costs and the indirect losses from
foregone production, increase convexly if more capital
is initially defective. Indirect costs become larger com-
pared to direct costs.

Introduction

A damage function assigns the losses from pollution to
the level of pollution. It is a core concept in environ-
mental economics and the integrated assessment of cli-
mate change. Usually, damage functions are assumed to
be convexly increasing and losses are in terms of utility
or output. However, detailed micro-foundations of the
concrete structure of damage functions are rare. This is
not a purely theoretical question, since, e.g., convexity
of damage functions is known to be a crucial prerequi-
site for Pigouvian taxation to be efficient (e.g. Winrich,
1982). Even importantly, when activities to reduce dam-
age are considered (called averting behavior, protective
measures, disaster mitigation or adaptation to climate
change in the literature), it is crucial to precisely under-
stand the nature of the externalities (Butler and Maher,
1986; McKitrick and Collinge, 2002).

In this paper we give a precise foundation of dam-
age from (unpredictable) extreme events that affect pro-
duction. In particular, we have damage from extreme
weather events in mind. Some of them are likely to in-

crease in frequency or intensity due to climate change.
Understanding the resulting damage costs is crucial for
(i) quantifying the costs of climate change and (ii) for
identifying parameters that determine the extent of dam-
age and that can be changed by adaptation strategies. To
do so, we will both consider the direct costs from recon-
structing defective facilities and the indirect costs from
the loss of production during reconstruction.

A review on the economics of disasters by Okuyama
(2003) collects empirical evidence for a broad variety of
economic effects that appear in association with extreme
events. Although there are the intrinsic data problems of
disaster research, the review nevertheless concludes that
there are still important theory gaps. In particular, it dis-
cusses the dynamics in the direct aftermath of extremes,
for example changes of market equilibrium, capital re-
placement and the speed of recovery. Already Dacy and
Kunrether (1969) discuss possible market failure due to,
e.g., rigidities of factor allocation – a thread of the dis-
cussion we will take up as well. According to (Albala-
Bertrand, 1993) the impact of a natural disaster can be
diverse and on physical structure, livestocks and human
population. In this paper we concentrate on physical
production structure. Hallegatte et al. (2007) develop
a model where an extreme event affects all production
facilities of an economy equally. The facilities are sub-
sequently reconstructed to the pre-event level. This is
in sharp contrast to damage functions in integrated as-
sessment models where damage reduce the amount of
capital in the economy. If these models use a macroe-
conomic production with diminishing returns from cap-
ital, this formulation of damage implies that only the
least efficient production facilities are affected. Since
there is no overall reason for this to happen, just reduc-
ing the capital stock strongly underestimates damage.
On the other hand, Hallegatte et al. (2007) further as-
sume that all facilities are reconstructed at the same rate.
Yet, this may not be efficient since it would be prof-
itable to concentrate reconstruction effort on the more
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productive facilities first. Our paper will investigate a
special case where this simplification is, however, jus-
tified. Hallegatte and Dumas (2009) investigate the ef-
fects of an extreme event when there is the possibility
to replace destroyed capital by more productive capital
due to technological progress. In contrast, we concen-
trate on the case where reconstructing defective capital
is always preferable to replacement with new facilities.
Gaddis et al. (2007) broadly discuss that the reported
damage costs from disasters mostly include only the di-
rect costs, often defined by the replacement costs of the
damaged assets, or the insurance value. Thus, substan-
tial indirect costs are usually disregarded. They list very
different categories of indirect costs that are partially
very difficult to estimate. In our contribution we solely
focus on the indirect costs due to loss of production in
the affected industry.

Our model considers a single industry with homoge-
neous output that is affected by an (unpredictable) ex-
treme event, such that a fraction of the capital stock be-
comes defective. The capital stock is assumed to be de-
composed into production facilities with individual pro-
duction functions, with labor as further input. With a
fixed supply, labor is optimally allocated to the facili-
ties to maximize output, obtaining an aggregate produc-
tion function. By introducing the amount of defective
capital as additional variable, we obtain a modified ag-
gregate production function. Its shape depends on the
assumptions about the flexibility of allocation of labor.
We consider the two extreme cases where labor either is
always efficiently allocated, or is rigid at the pre-event
level. After an extreme event, the inter-temporally opti-
mum reconstruction path for the industry is determined
to minimize total damage costs. Reconstruction requires
convexly increasing costs to represent that a faster re-
construction process requires more inputs due to adjust-
ment costs and possible shortage of supply for recon-
struction after an extreme event. These direct damage
costs add to the loss of production (in comparison to the
undisturbed industry), called indirect damage costs of
the event.

We find that loss of production at a particular time after
an extreme event are a convex function in the amount
of defective capital. During reconstruction, these losses
accumulate to indirect damage depending on the recon-
struction path. The reconstruction time can be shortened
at the cost of higher reconstruction expenditures. For
the special case of a rigid allocation of labor after an
extreme event and quadratic reconstruction costs, both
the direct and the indirect damage of an extreme event
increase convexly if more capital is initially defective.
Yet, indirect damage become more important than direct
damage for events with more initially defective capital.

The paper is structured as follows. We begin with a pro-
duction model of a decomposed capital stock that can be

damaged by an extreme event. Since the loss of produc-
tion depends on how easily labor can be reallocated after
an extreme event, two polar cases are derived. Based on
that the optimum reconstruction path after an extreme
event is determined. Direct and indirect damage costs
of an extreme event are computed for a specific case.
The results are discussed in the concluding sections.

The Model of Production and
Defective Capital
We consider an industry with a capital stock K that is
composed of a continuum of k ∈ [0,K] production fa-
cilities with production functions

fk(lk) = ε kl
1−γ
k (1)

with labor input lk and 0 < γ < 1. The coefficients ε k
represent the production efficiency of the facility k ∈
[0,K]. It is assumed that there is a fixed supply of labor
L =

∫K
0
lk dk for the industry. Aggregate output F is

then given by the aggregate production function

F (K,L) = max
lk,k∈[0,K]

K∫
0

fk(lk) dk , (2)

s.t. L =

K∫
0

lk dk . (3)

The optimum allocation of labor is determined from the
first-order conditions as

lk =

(
1
ε k

∫ K

0

ε k dk

)−1

L , (4)

depending on the profile of efficiency ε k, k ∈ [0,K].
Consequently the aggregate production function is a
Cobb-Douglas function

F (K,L) =

 1
K

K∫
0

ε
1
γ

k dk

γ

L1−γKγ , (5)

with decreasing rates of return and constant returns to
scale. The factor with the integral is a generalized mean
value of the efficiency profile ε k, k ∈ [0,K].

To consider disturbances caused by extreme events, a
(temporary) loss of productive capital is represented by
z, the stock of defective capital. The differenceK−z is
the amount of active capital that can be used as an input
for production F̃ during the time after an extreme event.
The stock of defective capital is reduced by reconstruc-
tion. Obviously, 0 ≤ z ≤ K. For the sake of simplicity
we assume identical efficiency coefficients ε k = ε , but
discuss it more generally at the end.
Now the question arises how production changes when
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z > 0 after an extreme event. The results depend on the
allocation of labor after the event. We consider two pos-
sibilities in the following. In the “flexible” case, labor is
instantaneously and efficiently re-allocated to those fa-
cilities that are not defective. In the “rigid” case it is
assumed that labor cannot be re-allocated. The share of
the workforce that is associated with the defective fa-
cilities becomes temporarily lost. In practice, allocation
of labor is expected to be within both these cases, since
options for reallocation are to be expected, but may be
limited due to various constraint in the post-disaster sit-
uation.
We consider rigid labor first. In this case its allocation
is equal to that in Equation (4). Therefore, considering
the identical efficiency of all facilities, post-event labor
per facility l̃r and production f̃r become

l̃r(K,L) =
L

K
; f̃r(K,L) = ε

(
L

K

)γ−1

. (6)

Here and in the following the subscript r corresponds to
the rigid case. The aggregate production function with
defective capital z is thus given by

F̃ r(K,L, z) =

K−z∫
0

ε l̃r
1−γ dk

=
(
1− z

K

)
εL1−γKγ

=
(
1− z

K

)
F (K,L). (7)

Now consider flexible labor. Here the stock of defec-
tive capital is accounted for allocation of labor after an
extreme event, modifying Equation (4) to

l̃f =
L

K − z
, (8)

where the subscript f denotes results for the flexible
case. This gives the aggregate production function with
defective capital

F̃ f (K,L, z) =

K−z∫
0

ε

(
L

K − z

)1−γ

dk

=
(
1− z

K

)γ
εL1−γKγ

=
(
1− z

K

)γ
F (K,L) . (9)

Thus, depending on the case, the reduced production for
a stock of defective capital z either is described by F̃ r of
Equation (7) in case of rigid allocation, or F̃ f of Equa-
tion(9) in case of flexible one. Comparing these two
cases with production F for a completely intact capital
stock, we can express the loss of production B as

B(K,L, z) = F (K,L)− F̃ (K,L, z) . (10)

This is

Br(K,L, z) =
z

K
F (K,L) (11)

for rigid and

Bf (K,L, z) =
[
1−

(
1− z

K

)γ]
F (K,L) (12)

for flexible allocation of labor. Fig. 1 shows the loss of
production for both cases. Obviously, defective capital
always decreases production, i.e. B(K,L, z) ≥ 0 as
0 ≤ z/K ≤ 1. It is also clear that Br(K,L, 0) =
Bf (K,L, 0) = F (K,L).
In the rigid case the first and the second derivatives of
loss of production are

∂zBr =
F (K,L)

K
, ∂2

zBr = 0 . (13)

We get a constant increase of loss of production and thus
observe a linear dependency between the stock of defec-
tive capital and loss of production. In the flexible case
the derivatives are

∂zBf = γ
(
1− z

K

)γ−1 F (K,L)
K

, (14)

∂2
zBf = γ(1− γ)

(
1− z

K

)γ−2 F (K,L)
K2

, (15)

which are both positive. The loss of production is an
increasing and convex function of defective capital z.

 0

 0
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Figure 1: The loss of production, depending on the stock of defective
capital z for the case of rigid and flexible allocation of labor after an
extreme event.

The Model of Reconstruction
After an Extreme Event
When at a point in time an extreme event harms an
amount of capital so that it becomes defective, it is the
next question how defective capital is reconstructed af-
terwards. We denote the initial stock of defective capi-
tal by z(0) = z0. For the process of repairing we im-
pose some crucial assumptions: (i) repairing the defec-
tive capital is cheaper or has higher returns than invest-
ing in new one; (ii) reconstruction takes place during a
short timescale after the event, such that discounting is
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not a matter here; (iii) the supply of labor and capital re-
mains constant on that time scale as well; (iv) the mar-
ket price for the produced output remains constant as
well; (v) the occurrence of extreme events is rare com-
pared to the reconstruction time such that there is no
new extreme event during recovery time from the last
event. The objective of reconstruction is to achieve a
minimum (possible) loss of output at the time during re-
construction, taking the costs of reconstruction into ac-
count. The decision is about how much reconstruction
R(t) is spend at time t to decrease the stock of defective
capital z. We suppose that reconstruction services are
delivered at convexly increasing cost c(R), measured in
industry output as numeraire. This leads to the follow-
ing problem:

min
R(t)

D(K,L, z0, R(t)),

D =

tF∫
0

B(K,L, z(t)) + c(R(t)) dt, (16)

s.t. ż(t) = −R(t) , z(t) ≥ 0 , R(t) ≥ 0. (17)

The terminal time tF is endogenous to the problem and
denotes the time where all productive capital is recon-
structed z(tF ) = 0. The stock of defective capital z(t)
is reduced by spending for reconstruction R(t), which
reduces the loss of production B at each time.

Next we determine the optimally reconstruction path.
The Hamilton is given by

H = B(K,L, z) + c(R)− πR, (18)

where π is the co-state variable. For a strictly convex
cost function the Hamilton has a minimum. The first
order conditions yield

π = ∂R c(R) , (19)

and

π̇ = −∂zB(z) = Ṙ∂2
Rc(R) . (20)

This tells us that we allocate the investment into recon-
struction according to its marginal benefit, which is the
reduction of loss of production. The transversality con-
dition determines the end of reconstruction tF where
z(tF ) = 0, R(tF ) = 0. Using Equations (19) and (20)
the dynamics of optimum reconstruction is described by
the differential equations

Ṙ? = −∂zB(z?)
∂2
Rc(R?)

, (21)

ż? = −R?. (22)

Recall that the loss of productionB is a convex function
of z. Since marginal reconstruction costs increase in
R, reconstruction activities are highest directly after an
extreme event and decrease afterwards.

For a given optimum reconstruction pathR?, we call the
summed costs of reconstruction

DR =

tF∫
0

c(R?(t)) dt (23)

the direct damage DR of an extreme event and the fore-
gone production compared to the undisturbed produc-
tion,

DB =

tF∫
0

B(K,L, z?) dt (24)

its indirect damage DB . The total damage D of an ex-
treme event is the sum of direct and indirect damage, as
stated in Equation (16).

As an example we now consider rigid allocation of la-
bor, so that Equation (11) describes the loss of produc-
tion. Further we take quadratic costs of reconstruction

c(R) = aR+
b

2
R2 a ∈ R, b > 0 . (25)

Here, a and b are constant parameters. According to
Equation (21) we have

Ṙ(t) = −F (K,L)
Kb

= const., R(t) ≥ 0 . (26)

Now we can solve the two Equations (22) and (26) im-
plying that in the end after a time tF , the defective cap-
ital as well as reconstruction are zero. The solution of
the problem is

tF =

√
2bKz0
F (K,L)

, (27)

z(t) = z0 −
√

2z0F (K,L)
bK

t+
F (K,L)

2bK
t2, (28)

R(t) =

√
2z0F (K,L)

bK
− F (K,L)

bK
t, . (29)

With this, the direct, indirect and total damage caused
by an extreme event are

DR = a z0 +
z0
3

√
2bz0
K

F (K,L), (30)

DB =
z0
3

√
2bz0
K

F (K,L), (31)

D = a z0 +
2z0
3

√
2bz0
K

F (K,L), (32)

as to see by solving the integrals of Equations (23) and
(24). Interestingly, the damage increases more than lin-
early with the initially defective capital by an exponent
of one and a half. Comparing the direct and indirect
damage

DR

DB
= 1 +

3a√
2bz0
K F (K,L)

, (33)
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shows that in this example the direct damage costs ex-
ceed the indirect damage costs if an optimum recon-
struction path is chosen. Further, the ratio increases with
more initially defective capital, revealing that the share
of indirect damage to total damage costs increases.

Discussion
The analysis defines the reconstruction time as the span
between the occurrence of an extreme event and the re-
turn of the capital stock to the status before this event.
We thus assume that an event itself does not change the
long-term production function. This might be a reason-
able assumption if there is only limited technological
progress and if no further extreme event occurs during
reconstruction. Otherwise, persistent changes can re-
sult, leading to a quite different assessment of disaster
costs.

One should be careful that the total damage costs from
an extreme event as determined in this paper are not the
same as a damage function in environmental economics.
For that, another ingredient is missing, namely the rela-
tion of pollution to the strength and frequency of ex-
treme events. If this is a convex correspondence, the
damage function will be convex. However, it is likely
that distributions of extreme events yield concave re-
sults since the probability that a larger part of the capital
stock will become defective is lower. For this, it depends
whether the convexity of total damage costs depending
on the initially defective capital as determined in this pa-
per is so strong that the damage distribution gets a ’fat
tail’ or not.

The convex damage costs computed in the last section
depend on the assumption that the allocation of labor is
rigid after an extreme event. Lower damage are to ex-
pect, if the more optimistic assumption of an efficient
allocation of labor is made. There also might be further
short-term market adaptation effects, e.g. when labor
costs or demand for industry output changes. Further-
more, other additional costs, as removal expenses, are
under circumstances not negligible.

When the total damage costs of an extreme event are a
convex function of initially defective capital, an impor-
tant conclusion for adaptation measures reducing dam-
age can be drawn. We call this argument, which is de-
picted in Figure 2, “impact aversion”. Note that the
average damage costs of a “weak” and a “strong” ex-
treme event is higher than the total damage costs of one
event with the mean initially defective capital. Thus,
when there are measures available (at the same cost)
that reduce the initially defective capital, or others alter-
natively reducing the frequency of extreme events, the
former would be preferable. As an example, consider
sea surges as extreme events that damage a coastal in-
dustry. There are different ways to cope with such risks,

 0
 0

D

z0
a b(a+b)/2

(Da+Db)/2

D(a+b)/2

Figure 2: Illustration of impact aversion for convex total damage D
depending on the initial level of defective capital z0.

e.g. building or raising levees, or relocating industry
from areas that may be flooded. The former reduces the
frequency of surges that affect the industry. Yet, only
those floods that are higher than the levee damage in-
dustry, but in a similar way as if there were no levee.
In contrast, relocation does not reduce the frequency of
floods reaching the inland, but decreases the amount of
capital that can be damaged. In the light of the “impact
aversion” argument, relocation may thus be preferable
to structural coastal protection.

Conclusion

The paper shows how a micro-foundation of direct and
indirect damage can justify the convexity of total dam-
age from extreme events or disasters (as function of the
capital stock that becomes defective due to the disaster).
In particular, the optimum reconstruction path reducing
defective capital during the aftermath of an event is con-
sidered. It is shown that for extreme events resulting in
a higher level of defective capital, the share of indirect
damage costs to total damage costs increases. This gives
valuable hints for disaster mitigation strategies and for
adaptation to climate change. The model also clarifies
where non-convexities may occur if some simplifying
assumptions are invalidated.

One interesting next step would be to relax the assump-
tion of constant efficiency in the capital stock, e.g. by
considering vintage capital or facilities with different
productivity. This could lead to less damage when
an optimum reconstruction path is chosen. Yet, there
would be some analytical difficulties since the degree of
reconstruction cannot be measured by a scalar. A de-
tailed allocation of reconstruction activities to different
parts of the capital stock needs to be determined, in-
stead. We delegate this analysis to a future paper.

However, we hope that the present analysis contributes
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to the economic theory of disasters, as well as to that of
adaptation to climate change.
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